

High-Precision Humidity / Temperature Transmitter for HVAC Applications

EE21

Transmitters of the EE21 series have been developed for high-precision measurement of relative humidity and temperature.

EE21 transmitters are available for wall and duct mounting with or without the very useful snap inmounting kit, which allows a quick and easy exchange of the transmitter. Outputs can be selected between voltage and current.

An optional radiation shield providing a forced ventilation is recommended for use in outdoor applications.

Special protection coating for the sensing element (code - HC) permits the permanent use in very polluted environments.

High humidity calibration is recommended for applications in high lasting humidities > 90% RH (Code - CA01).

Humidity Two-point Adjustment_

With an easy routine via the push-buttons "UP" and "DOWN" on the circuit board the user can perform a fast and accurate two-point adjustment of relative humidity.

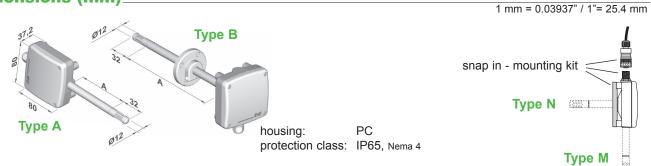
Features

v1.5

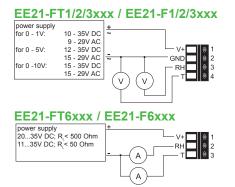
Typical Applications

green houses storage rooms swimming halls meteorology measuring range 0...100% RH accuracy ±2% RH traceable calibration working range -40...60°C (-40...140°F) wettable excellent long term stability

Technical Data


Sensor	HC1000 or HC1000C	(with coating)
Analogue output appropriate 0100% RH	0-1V 0-5V / 0-10V 4-20mA (two wires)	-0.5mA < I < 0.5mA -1mA < I < 1mA R < 500 Ohm
Working range ¹⁾	0100% RH	$R_{\rm L} \sim 300$ OIIII
Accuracy at 20°C (68°F)	± 2% RH (090%) Traceable to internation	± 3% RH (90100%) onal standards, administrated by NIST, PTB, BE
Hysteresis 10% - 80% - 10%	< 2% RH	
Temperature dependence of electronics Temperature dependence of probe	typ. 0.03% RH/°C typ. 0.03% RH/°C	(0.02% RH/°F) (0.02% RH/°F)
Temperature		()
Sensor	Pt1000 (tolerance clas	s A. DIN EN 60751)
Analogue output -4060°C (-40140°F)	0-1V 0-5V / 0-10V 4-20mA (two wires)	-0.5mA < I < 0.5mA -1mA < I < 1mA
Accuracy	^{1°C} 0.7 0.5 0.4 0.4 0.4	L
	$\begin{array}{c} 0.3 \\ 0.2 \\ 0.1 \\ 0 \\ 0 \\ 0.1 \\ 0 \\ 0.1 \\ 0 \\ 0.2 \\ 0.3 \\ 0.3 \\ 0.4 \\ 0.4 \\ 0.5 \\ 0.6 \\ 0.7 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$\begin{array}{c} 1 & 0 & 0.3 \\ 0.2 \\ 0.1 \\ 0.1 \\ 0.3 \\ 0.40 \\ 0.3 \\ 0.3 \\ 0.40 \\ 0.3 \\ 0.40 \\ 0.1 \\ $

General


Supply				
for 0 - 1V	10 - 35V DC or 9 - 2	9V AC		
for 0 - 5V	12 - 35V DC or 15 -	29V AC		
for 0 - 10V		29V AC		
for 4 - 20mA	10V +R _L x 0,02 < U _v < 35V DC; R _L	< 500 Ohm		
Current consumption	for DC supply: typ. 5mA	for AC supply: typ. 15mA		
Electrical connection	screw terminals max. 1.5 mm ² (AWG	16)		
Cable gland	M16x1.5 or connection plug (only sr	nap-in models N + M)		
	cable Ø 4.5 - 10 mm (0.18 - 0.39")			
Sensor protection	membrane filter, sintered stainless s	teel filter, metal grid filter, PTFE filter		
Electromagnetic compatibility	EN61326-1 EN61326-2-3	ICES-003 ClassB		
	Industrial Environment	FCC Part15 ClassB		
Temperature ranges	working temperature probe:	-4060°C (-40140°F)		
	working temperature electronics:	-4060°C (-40140°F)		
	storage temperature:	-2560°C (-13140°F)		
	o .	. ,		

1) Please refer to working range of HC1000!

Dimensions (mm)

Connection Diagram

Ordering Guide

MODEL	OUTPUT	Г	T-SENSOR (only passive)	2	HOUSING TYPE		PROBE LEN (see dimensions		FILTER	
humidity + temperature (FT)	0 - 1 V	(1)	Pt 100 DIN A	(A)	wall mounting	(A)	50 mm (1.9")	(2)	membrane filter	(1)
humidity (F)	0 - 5 V	(2)	Pt 1000 DIN A	(C)	duct mounting	(B)	200 mm (7.9")	(5)	sintered stainless steel filte	er(3)
humidity+temp. passive (FP)	0 - 10 V	(3)			snap in - wall mounting ¹⁾	(M)			metal grid filter	(6)
	4 - 20 mA	(6)			snap in - duct mounting ¹⁾	(N)				
FF21-										

COATING		T-UNIT		SCALING OF T-OUTPUT			
no	(no code)	°C	(no code)	-4060	(T02) -40140(T83)		
yes	(HC01)	°F	(E01)	-3070	(T08) 0176 (T86)		
				-2080	(T24) 32132 (T96)		
				other	(Txx)		

1) Combination snap - in mounting and model FP is not possible

Accessories_

- radiation shield (HA010501)

- filter caps (HA0101xx)

Order Example_

ELEKTRONIK[®]

EE21-FT3A26/T24

er
51